Newton’s problem of the body of minimal resistance in the class of convex developable functions

نویسندگان

  • T. Lachand-Robert
  • M. A. Peletier
چکیده

We investigate the minimization of Newton’s functional for the problem of the body of minimal resistance with maximal height M > 0 [1] in the class of convex developable functions defined in a disc. This class is a natural candidate to find a (non-radial) minimizer in accordance with the results of [2]. We prove that the minimizer in this class has a minimal set in the form of a regular polygon with n sides centered in the disc, where the natural number n ≥ 2 is a non-decreasing function of M . The corresponding functions all achieve a lower value of the functional than the optimal radially symmetric function with the same height M . Résumé. Nous examinons la minimisation de la fonctionnelle de Newton pour le problème de résistance minimale [1] d’un corps de hauteur maximale M > 0 dans la classe des fonctions convexes développables définies sur un disque. D’après les résultats de [2], cette classe est un candidat naturel pour la recherche d’un minimiseur non-radial. Nous démontrons que tout minimiseur dans cette classe a pour ensemble minimal un polygone régulier à n côtés centré dans le disque ; le nombre n ≥ 2 crôıt lorsque M diminue. Les fonctions correspondantes ont toutes une résistance plus faible que la fonction radiale minimale de même hauteur M donnée par Newton.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newton ' s Problem of the Body of Minimal Resistan e in the Class ofConvex

Newton's problem of the body of minimal resistance in the class of convex developable functions

متن کامل

Higher order close-to-convex functions associated with Attiya-Srivastava operator

In this paper‎, ‎we introduce a new class$T_{k}^{s,a}[A,B,alpha‎ ,‎beta ]$ of analytic functions by using a‎ ‎newly defined convolution operator‎. ‎This class contains many known classes of‎ ‎analytic and univalent functions as special cases‎. ‎We derived some‎ ‎interesting results including inclusion relationships‎, ‎a radius problem and‎ ‎sharp coefficient bound for this class‎.

متن کامل

The Fekete-Szegö problem for a general class of bi-univalent functions satisfying subordinate conditions

In this work, we obtain the Fekete-Szegö inequalities for the class $P_{Sigma }left( lambda ,phi right) $ of bi-univalent functions. The results presented in this paper improve the recent work of Prema and Keerthi [11].

متن کامل

Fekete-Szegö Problem of Functions Associated with Hyperbolic Domains

In the field of Geometric Function Theory, one can not deny the importance of analytic and univalent functions. The characteristics of these functions including their taylor series expansion, their coefficients in these representations as well as their associated functional inequalities have always attracted the researchers. In particular, Fekete-Szegö inequality is one of such vastly studied a...

متن کامل

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM

In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999